Simulation

Dr. Xueping Li
University of Tennessee
What is Simulation?

Chapter 1
Simulation Is …

- *Simulation* – very broad term – methods and applications to imitate or mimic real systems, usually via computer
- Applies in many fields and industries
- Very popular and powerful method
- Book covers simulation in general and the *Arena* simulation software in particular
- This chapter – general ideas, terminology, examples of applications, good/bad things, kinds of simulation, software options, how/when simulation is used
• **System** – facility or process, actual or planned

 ▪ Examples abound …
 – Manufacturing facility
 – Bank operation
 – Airport operations (passengers, security, planes, crews, baggage)
 – Transportation/logistics/distribution operation
 – Hospital facilities (emergency room, operating room, admissions)
 – Computer network
 – Freeway system
 – Business process (insurance office)
 – Criminal justice system
 – Chemical plant
 – Fast-food restaurant
 – Supermarket
 – Theme park
 – Emergency-response system
Work With the System?

• Study the system – measure, improve, design, control
 ▪ Maybe just play with the actual system
 – Advantage — unquestionably looking at the right thing
 ▪ But it’s often impossible to do so in reality with the actual system
 – System doesn’t exist
 – Would be disruptive, expensive, or dangerous
Models

- **Model** – set of assumptions/approximations about how the system works
 - Study the model instead of the real system … usually much easier, faster, cheaper, safer
 - Can try wide-ranging ideas with the model
 - Make your mistakes on the computer where they *don’t* count, rather than for real where they *do* count
 - Often, just *building* the model is instructive – regardless of results
 - Model *validity* (any kind of model … not just simulation)
 - Care in building to mimic reality faithfully
 - Level of detail
 - Get same conclusions from the model as you would from system
 - More in Chapter 13
Types of Models

• **Physical (iconic) models**
 - Tabletop material-handling models
 - Mock-ups of fast-food restaurants
 - Flight simulators

• **Logical (mathematical) models**
 - Approximations and assumptions about a system’s operation
 - Often represented via computer program in appropriate software
 - Exercise the program to try things, get results, learn about model behavior
• If model is simple enough, use traditional mathematical analysis … get exact results, lots of insight into model
 - Queueing theory
 - Differential equations
 - Linear programming

• But complex systems can seldom be validly represented by a simple analytic model
 - Danger of over-simplifying assumptions … model validity?
 - Type III error – working on the wrong problem

• Often, a complex system requires a complex model, and analytical methods don’t apply … what to do?
Computer Simulation

- Broadly interpreted, computer simulation refers to methods for studying a wide variety of models of systems
 - Numerically evaluate on a computer
 - Use software to imitate the system’s operations and characteristics, often over time
- Can be used to study simple models but should not use it if an analytical solution is available
- Real power of simulation is in studying complex models
- Simulation can tolerate complex models since we don’t even aspire to an analytical solution
• Consistently ranked as the most useful, popular tool in the broader area of operations research / management science

 1978: M.S. graduates of CWRU O.R. Department … after graduation
 1. Statistical analysis
 2. Forecasting
 3. Systems Analysis
 4. Information systems
 5. Simulation

 1979: Survey 137 large firms, which methods used?
 1. Statistical analysis (93% used it)
 2. Simulation (84%)
 3. Followed by LP, PERT/CPM, inventory theory, NLP, …
Popularity of Simulation (cont’d.)

- **1980:** (A)IIE O.R. division members
 - First in utility and interest — simulation
 - First in familiarity — LP (simulation was second)

- **1983, 1989, 1993:** Longitudinal study of corporate practice
 1. Statistical analysis
 2. Simulation

- **1989:** Survey of surveys
 - Heavy use of simulation consistently reported
Advantages of Simulation

- **Flexibility to model things as they are (even if messy and complicated)**
 - Avoid *looking where the light is* (a morality play):
 You’re walking along in the dark and see someone on hands and knees searching the ground under a street light.
 You: “What’s wrong? Can I help you?”
 Other person: “I dropped my car keys and can’t find them.”
 You: “Oh, so you dropped them around here, huh?”
 Other person: “No, I dropped them over there.” (Points into the darkness.)
 You: “Then why are you looking here?”
 Other person: “Because this is where the light is.”

- **Allows uncertainty, nonstationarity in modeling**
 - The only thing that’s for sure: nothing is for sure
 - Danger of ignoring system variability
 - Model validity
Advantages of Simulation (cont’d.)

- **Advances in computing/cost ratios**
 - Estimated that 75% of computing power is used for various kinds of simulations
 - Dedicated machines (e.g., real-time shop-floor control)

- **Advances in simulation software**
 - Far easier to use (GUIs)
 - No longer as restrictive in modeling constructs (hierarchical, down to C)
 - Statistical design & analysis capabilities
The Bad News

• Don’t get exact answers, only approximations, estimates
 ▪ Also true of many other modern methods
 ▪ Can bound errors by machine roundoff

• Get random output (*RIRO*) from stochastic simulations
 ▪ Statistical design, analysis of simulation experiments
 ▪ Exploit: noise control, replicability, sequential sampling, variance-reduction techniques
 ▪ Catch: “standard” statistical methods seldom work
Different Kinds of Simulation

- **Static vs. Dynamic**
 - Does time have a role in the model?

- **Continuous-change vs. Discrete-change**
 - Can the “state” change continuously or only at discrete points in time?

- **Deterministic vs. Stochastic**
 - Is everything for sure or is there uncertainty?

- **Most operational models:**
 - *Dynamic, Discrete-change, Stochastic*
 - Though Chapter 11 discusses continuous and combined discrete-continuous models
Simulation by Hand: The Buffon Needle Problem

- Estimate π (George Louis Leclerc, c. 1733)
- Toss needle of length l onto table with stripes d ($>l$) apart
- P (needle crosses a line) = $\frac{2l}{\pi d}$
- Repeat; tally \hat{p} = proportion of times a line is crossed
- Estimate π by $\frac{2l}{\hat{p}d}$
Why Toss Needles?

- Buffon needle problem seems silly now, but it has important simulation features:
 - Experiment to *estimate* something hard to compute exactly (in 1733)
 - *Randomness*, so estimate will not be exact; estimate the error in the estimate
 - *Replication* (the more the better) to reduce error
 - *Sequential sampling* to control error — keep tossing until probable error in estimate is “small enough”
 - *Variance reduction* (*Buffon Cross*)
Using Computers to Simulate

- **General-purpose languages (FORTRAN)**
 - Tedious, low-level, error-prone
 - But, almost complete flexibility

- **Support packages**
 - Subroutines for list processing, bookkeeping, time advance
 - Widely distributed, widely modified

- **Spreadsheets**
 - Usually static models
 - Financial scenarios, distribution sampling, SQC
• Simulation languages
 - GPSS, SIMSCRIPT, SLAM, SIMAN (on which Arena is based, and is included in Arena)
 - Popular, still in use
 - Learning curve for features, effective use, syntax

• High-level simulators
 - Very easy, graphical interface
 - Domain-restricted (manufacturing, communications)
 - Limited flexibility — model validity?
Where Arena Fits In

- **Hierarchical structure**
 - Multiple levels of modeling
 - Can mix different modeling levels together in the same model
 - Often, start high then go lower as needed

- **Get ease-of-use advantage of simulators without sacrificing modeling flexibility**

```
Higher

User-Created Templates
- Commonly used constructs
- Company-specific processes
- Company-specific templates
  etc.

Application Solution Templates
- Contact centers
- Packaging lines
  etc.

Basic Process Panel
- Many common modeling constructs
- Very accessible, easy to use
- Reasonable flexibility

Advanced Process, Advanced Transfer Panels
- Access to more detailed modeling for greater flexibility

Blocks, Elements Panels
- All the flexibility of the SIMAN simulation language

Lower

User-Written Visual Basic, C/C++ Code
- The ultimate in flexibility
- VBA is built in
- C/C++ requires compiler
```
• Uses of simulation have evolved with hardware, software

• The early years (1950s-1960s)
 ▪ Very expensive, specialized tool to use
 ▪ Required big computers, special training
 ▪ Mostly in FORTRAN (or even Assembler)
 ▪ Processing cost as high as $1000/hour for a sub-286 level machine
• The formative years (1970s-early 1980s)
 - Computers got faster, cheaper
 - Value of simulation more widely recognized
 - Simulation software improved, but they were still languages to be learned, typed, batch processed
 - Often used to clean up “disasters” in auto, aerospace industries
 - Car plant; heavy demand for certain model
 - Line underperforming
 - Simulated, problem identified
 - But demand had dried up — simulation was too late
• The recent past (late 1980s-1990s)
 ▪ Microcomputer power
 ▪ Software expanded into GUls, animation
 ▪ Wider acceptance across more areas
 – Traditional manufacturing applications
 – Services
 – Health care
 – “Business processes”
 ▪ Still mostly in large firms
 ▪ Often a simulation is part of the “specs”
When Simulations are Used (cont’d.)

• The present
 ▪ Proliferating into smaller firms
 ▪ Becoming a standard tool
 ▪ Being used earlier in design phase
 ▪ Real-time control

• The future
 ▪ Exploiting interoperability of operating systems
 ▪ Specialized “templates” for industries, firms
 ▪ Automated statistical design, analysis
 ▪ Networked sharing of data in real time
 ▪ Integration with other applications
 ▪ Distributed model building, execution